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DISLOCATION KINETICS BEHIND SHEAR SHOCKS*

R. B. Stout and G. D. ANDERSON

Lawrence Livermore National Laboratory
Livermore, CA 94550

ABSTRACT

High velocity oblique impact experiments result in both compression
and shear shock waves. Behind the shear shock wave the particle velocity
is transverse to the shock front. At large transverse particle veloci-
ties, dislocation kinetics can contribute a portion of the velocity.
Based on a kinematic and thermodynamic model of dislocation kinetics, an
analysis is made of the transverse strain and velocity behind a shear
shock. Kinematics of dislocations in transverse motion behind the shock
is formulated. A solution is given for an ideal case where the disloca-
tion density function propagates as a pulse behind the shear shock.

INTRODUCTION

Oblique impact experiments have been perffrmed to investigate
metallic material response at high shear rates =4, The inclined impact
experiment results in both a compression shock wave and transverse or
shear shock wave that propagate through the test specimen. The compres-
sion waves propagate faster than the transverse wave. The high shear
rates occur across and behind the transverse wave. The particle velocity
across a transverse shock wave has a discontinuity in the vector compo-
nent perpendicular to the propagation direction of the shock front. For
an elastic shock, the discontinuity in the transverse particle velocity
results in a propagating discontinuity in the shear strain and in the
shear stress; and the deformation after the shock is recoverable. For
strong shocks which involve dislocations the deformation after the shock
is not all recoverable. The following analysis considers the simplest
case of dislocation kinetics across and behind a transverse shock. The
field equations and the discontinuity conditions across a shock front for
mass, momentum, and energy depend on a dislocation density function. In
addition, there is a field equation and a discontinuity condition across
a shock front for the dislocation density function. These equatiogs and
their associated discontinuity conditions are described elsewhere.”~’/

*Work performed under the auspices of the U.S. Department of Energy by
the Lawrence Livermore National Laboratory under contract number
W-7405-ENG-48.
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DISLOCATION DEPENDENT SHEAR SHOCK ANALYSIS

For a planar shear shock, coordinate axes can be selected such that
the shock front propagates along the Xo axis with velocity v = (0,v2,0)
and the particle velocity behind the shock front is along the X3 axis.
In the simplest idealized case, the nonrecoverable plastic deformations
can occur from edge dislocations. For a statistical dislocation species
distribution that depends only on the velocity of dislocations, the edge
dislocation would have a fixed Burgers' vector b = (0,0,b3), a velo-
city vector variable relative to the lattice structure v = (0,0,v3),
and a fixed line tangent vector £ = (-£,,0,0). The field equation and
the discontinuity condition across a shock front’ for the dislcocation
density function D(x,t,b,v,E) are given by

B =3+ 7:((v+ WD) =P+ K {y v¥) (1)

and

[(¥-y-vDln=p+k{v v¥} (2)

Equation (1) is a field equation of the Boltzmann type for the disloca-
tion density function at spatial points without shock fronts, equation
(2) is the discontinuity condition across a shock front propagating at
velocity V, and the other functions are for the mass velocity v, the unit
normal to the shock front n, the volume production for dislocation
species (b,v,£) denoted by P, the shock surface production for dislo-
cation species (b,v,£) denoted by p, and K and k are the transition
functionals for modelling dislocation interchanges between different
velocities for species (b,v,E) and (b,v*,£) in the volume and at a shock
surface, respectively. For a simple iTlustration, K and k are taken as
zero and only a model for the production of dislocations is considered.
A uniform density pulse of edge dislocation species (bsz,v3,E1) that
propagates at velocity V5, can be represented with a step function as

D(x,t,b5,v5,€1) = D (H(V,E = x,) = H(V,t = x, = X,)) (3)

where the pulse width is X5, D, is a constant, and H is the step
function which is unity when tﬁe argument is positive and zero otherwise.
Equation (3) satisfies equation (1) at points away from the shock front
and satisfies equation (2) at the "elastic-dislocation" shock front for

X2 = gt and at the dislocation shock front for x2 = gt - X2. The
production function creates dislocations at a rate of D,V, at the
elastic-dislocation shock front and annihilates dislocagions at a rate

of -DgV2 at the dislocation shock front.

From previous concepts gfveloped for the deformation and kinematics
due to dislocation kinetics,?=7 the total relative particle velocity
at points x behind a shock front currently located at x is given by

v Hxoxt) = v l(xog,t) + éébiejkzgkvﬂp + biejkzgkbm*ﬁdgdxj(yx,t) (4)
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For the transverse shock and edge dislocation species discussed above,
index i = 3, index j=2, index k = 1, and index & = 3, this identifies
the permutation tensor component ep)3 = -1. The total transverse
particle velocity v} behind the shock has a lattice structure
velocity term vzl and an edge dislocation velocity component
represented by the integration over the dislocation species g(v) in
domain Q and the_integration over the spatial points in domain (x + X).
In previous work®7 the dislocation dependent contribution to the
total relative velocity is denoted by vi] where "]" is used to
identify the accumulated discontinuities from dislocation flux and
dislocation density rate changes represented by the integrand. The
parameter b* in the integrand is the displacement that occurs when
dislocation density changes occur, for example when new dislocations are
created or when dislocations undergo transitions from v* = 0 to v* = v.

For this simple illustration of deformation across and behind a
transverse shock involving a propagating pulse of edge dislocations,
equations (2), (3) and (4) imply that the relative transverse particle
velocity can be integrated for (x2 - X2) < x2 < x2 to give

V3lxy + xprt) = v31(x5 + x5 t) - b8y 5E, va(Xy = X5,

- b3321351b3*V2°o|x2 (5)

In equation (5) the discontinuities that contribute to the particle
velocity from the dislocation flux term, v3Dg, behind the shock is
represented as spatially linear by using a mathematical approximation
that smooths the peaks in dislocation density that occur between atomic
planes, and the contribution to the particle velocity from dislocation
density changes at the shock front located at x; contains the term
b3*VD,. The other contribution to particle velocity is the lattice
structure term vsl; which would have a discontinuity at the shock front
in order for the shear strain, and consequently, shear stress discon-

tinuities to occur.

As discussed in the previous thermodynamic analysis for dislocation
kinetics the amount of work performed by the shear stress must be greater
than the local thermodynamic chemical potential for dislocation kinetics 5-7
to occur at and behind the shock front. This thermodynamic chemical
potential concept replaces the continuum plasticity concepts of a stress
dependent yield condition that has numerous different forms in pheno-

menological approaches.

In order to illustrate some kinematic and thermodynamic aspects of
dislocation kinetics for shear shocks, consider a shock impact that in-
puts a sustained and constant transverse particle velocity v3}, that
propagates through a material which is initially at rest and stress free.
Thus, the particle velocity v3lq must be attained from the lattice
structure velocity vs! and the dislocation dependent velocity vsz] of
equation (5) evaluatéd at x, = x5 - X5, which is the end of the dislo-
cation pulse. As discussed earlier, at the point, Xp = Xo, a dislocation
shock occurs to terminate the dislocation pulse; therefore, the relative
velocity expression across the shock plus the dislocation pulse becomes



V3lg = V3HXy > X5 = Xp0t) = v3l(xy + x5 = Xop £) = b3ey15E1vX D
(6)

= 0522135175V Polx, * P3%21551°5" V2P0l x,x,

For purposes of illustration, it is assumed that the lattice struc-
ture velocity vil has a discontinuity at the shock front and 1s then
constant behind the shock front so that the recoverable shear strain and

the associate shear stress are also uniform in the domain (x2 + x2 - X3)
of the dislocation pulse. Then neglecting the contributions to particle

velocity from the dislocation density changes at x2 and x - XE’ eqﬁation
(6) represents a linear increase in transverse particle velocity behind

the shock due to the propagating pulse of edge dislocations behind the
shock front. Thus, the shearing gradient of the nonrecoverable trans-
verse velocity term from this dislocation pulse is constant and is given

by
Av3t = = b3go; 58 V5D, (7)

which is the "plastic strain rate" in dislocation theory.8’9

Finally, the nonrecoverable relative displacement from the disloca-

tion flux term, viDg, over the pulse width can be obtained by a
time integration; and for uniform shock propagation velocity Vp it is a

quadratic function of the pulse width, given by

) .
Uzl(xy + x5 = X5y t) = = D35, VD XS/2V,, (8)

The rate energy is dissipated by the dislocation flux term is the ngn-=
recoverable work rate per unit volume performed by the shear stress-?
and is given by

AW|dislocation flux = ~ 93203821351V3P, (9)

where the shear stress for small strain elasticity is

055 = G v3I/V, (10)

Here, G is the elastic shear modulus and v3I/V, is the recoverable
or elastic strain across the shock front. Then the nonrecoverable work

rate for the dislocation pulse volume behind the shock front is given by

AW dislocation flux = ~ 032b3e213£lv3D0X2 (11)

From the thermodynamics of dislocation kJ‘.netics,5'7 this part of
the work rate is converted to entropy production; and would result
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primarily in a localized temperature increase behind the shock front.
For narrow dislocation pulse widths and high dislocation flux densities,
a rapid temperature increase would occur and would dissipate the energy
of a transverse shock front. Thus, for liquids containing dense sets of
dislocations,® the propagation of shear shocks over long distances 1s

not possible.
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